Inhaled cellulosic and plastic fibers found in human lung tissue.

نویسندگان

  • J L Pauly
  • S J Stegmeier
  • H A Allaart
  • R T Cheney
  • P J Zhang
  • A G Mayer
  • R J Streck
چکیده

We report the results of studies undertaken to determine whether inhaled plant (i.e., cellulosic; e.g., cotton) and plastic (e.g., polyester) fibers are present in human lungs and, if so, whether inhaled fibers are also present in human lung cancers. Specimens of lung cancer of different histological types and adjacent nonneoplastic lung tissue were obtained from patients undergoing a lung resection for removal of a tumor. With the protection of a laminar flow hood and safeguards to prevent contamination by extraneous fibers, fresh, nonfixed, and nonstained samples of lung tissue were compressed between two glass microscope slides. Specimens in these dual slide chambers were examined with a microscope configured to permit viewing with white light, fluorescent light, polarizing light, and phase-contrast illumination. Near-term fetal bovine lungs and nonlung human tumors were used as controls. In contrast to the observations of these control tissues, morphologically heterogeneous fibers were seen repetitively in freshly excised human lung tissue using polarized light. Inhaled fibers were present in 83% of nonneoplastic lung specimens (n = 67/81) and in 97% of malignant lung specimens (n = 32/33). Thus, of the 114 human lung specimens examined, fibers were observed in 99 (87%). Examination of histopathology slides of lung tissue with polarized light confirmed the presence of inhaled cellulosic and plastic fibers. Of 160 surgical histopathology lung tissue slides, 17 were selected for critical examination; of these, fibers were identified in 13 slides. The inhalation of mineral (e.g., asbestos) fibers has been described by many investigators; we believe, however, that this is the first report of inhaled nonmineral (e.g., plant and plastic) fibers. These bioresistant and biopersistent cellulosic and plastic fibers are candidate agents contributing to the risk of lung cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel nano cellulosic fibers for remediation of heavy metals from synthetic water

The increased surface area-to-volume ratio of nanoparticles, quantum size effects and the ability to tune surface properties through molecular modification make nanostructures ideal for environmental remediation. The present piece of work reports the preparation and characterization of nano cellulosic fibers (NCFs) with further polymeric reinforcement using vinyl sulphonic acid for the remediat...

متن کامل

Novel nano cellulosic fibers for remediation of heavy metals from synthetic water

The increased surface area-to-volume ratio of nanoparticles, quantum size effects and the ability to tune surface properties through molecular modification make nanostructures ideal for environmental remediation. The present piece of work reports the preparation and characterization of nano cellulosic fibers (NCFs) with further polymeric reinforcement using vinyl sulphonic acid for the remediat...

متن کامل

Clearance of inhaled ceramic fibers from rat lungs.

Deposition, clearance, retention, and durability of inhaled particles in lung are important factors for induction of pulmonary fibrosis or lung cancer. To study the deposition and clearance of aluminium silicate ceramic fibers from the lung, male Wistar rats were exposed to ceramic fibers, with a mass median aerodynamic diameter (MMAD) of 3.7 microns, for 6 hr/day, 5 days/week for 2 weeks. The ...

متن کامل

Persistence of natural mineral fibers in human lungs: an overview.

Virtually all available data on persistence of naturally occurring mineral fibers in human lungs have been derived from studies of asbestos fiber loads. These studies indicate that, although both amphibole and chrysotile asbestos fibers are found in the lungs of the general population and exposed workers, amphibole fibers are universally present in disproportionately large and chrysotile fibers...

متن کامل

On the Identification of Rayon/Viscose as a Major Fraction of Microplastics in the Marine Environment: Discrimination between Natural and Man-made Cellulosic Fibers by Fourier Transform Infrared Spectroscopy

This work was sparked by the reported identification of man-made cellulosic fibers (rayon/viscose) in the marine environment as a major fraction of plastic litter by Fourier transform infrared (FT-IR) transmission spectroscopy and library search. To assess the plausibility of such findings, both natural and man-made fibers were examined using FT-IR spectroscopy. Spectra acquired by transmission...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology

دوره 7 5  شماره 

صفحات  -

تاریخ انتشار 1998